

ENGINEERING MATHEMATICS

JOHN BIRD
SEVENTH EDITION
R

Engineering Mathematics

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will require both basic and advanced mathematics. Without mathematics to determine principles, calculate dimensions and limits, explore variations, prove concepts, and so on, there would be no mobile telephones, televisions, stereo systems, video games, microwave ovens, computers, or virtually anything electronic. There would be no bridges, tunnels, roads, skyscrapers, automobiles, ships, planes, rockets or most things mechanical. There would be no metals beyond the common ones, such as iron and copper, no plastics, no synthetics. In fact, society would most certainly be less advanced without the use of mathematics throughout the centuries and into the future.

Electrical engineers require mathematics to design, develop, test, or supervise the manufacturing and installation of electrical equipment, components, or systems for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform engineering duties in planning and designing tools, engines, machines, and other mechanically functioning equipment; they oversee installation, operation, maintenance, and repair of such equipment as centralised heat, gas, water, and steam systems.

Aerospace engineers require mathematics to perform a variety of engineering work in designing, constructing, and testing aircraft, missiles, and spacecraft; they conduct basic and applied research to evaluate adaptability of materials and equipment to aircraft design and manufacture and recommend improvements in testing equipment and techniques.
Nuclear engineers require mathematics to conduct research on nuclear engineering problems or apply
principles and theory of nuclear science to problems concerned with release, control, and utilisation of nuclear energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise methods to improve oil and gas well production and determine the need for new or modified tool designs; they oversee drilling and offer technical advice to achieve economical and satisfactory progress.

Industrial engineers require mathematics to design, develop, test, and evaluate integrated systems for managing industrial production processes, including human work factors, quality control, inventory control, logistics and material flow, cost analysis, and production co-ordination.

Environmental engineers require mathematics to design, plan, or perform engineering duties in the prevention, control, and remediation of environmental health hazards, using various engineering disciplines; their work may include waste treatment, site remediation, or pollution control technology.
Civil engineers require mathematics at all levels in civil engineering - structural engineering, hydraulics and geotechnical engineering are all fields that employ mathematical tools such as differential equations, tensor analysis, field theory, numerical methods and operations research.

Knowledge of mathematics is therefore needed by each of the engineering disciplines listed above.
It is intended that this text - Engineering Mathematics - will provide a step-by-step approach to learning fundamental mathematics needed for your engineering studies.

In memory of Elizabeth

Engineering Mathematics

Seventh Edition

John Bird, BSc (Hons), CMath, CEng, CSci, FIMA, FIET, FCollT

2 Routledge
Taylor \& Francis Group
LONDON AND NEW YORK

```
Seventh edition published 2014
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
and by Routledge
7 1 1 \text { Third Avenue, New York NY } 1 0 0 1 7
Routledge is an imprint of the Taylor & Francis Group, an informa business
```

© 2014 John Bird

The right of John Bird to be identified as the author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 1999
Sixth edition published by Newnes 2010
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging-in-Publication Data
Bird, J. O., author.
Engineering mathematics / John Bird. - Seventh edition.
pages cm
Includes bibliographical references and index.

1. Engineering mathematics. 2. Engineering mathematics-Problems, exercises, etc. I. Title.

TA330.B515 2014
510.24'62-dc23

2013040519
ISBN13: 978-0-415-66280-2 (pbk)
ISBN13: 978-1-315-85883-8 (ebk)
Typeset in Times by
Servis Filmsetting Ltd, Stockport, Cheshire

Contents

Preface xi
Section 1 Number and algebra 1
1 Revision of fractions, decimals and percentages 3
1.1 Fractions 3
1.2 Ratio and proportion 6
1.3 Decimals 7
1.4 Percentages 9
2 Indices, standard form and engineering notation 11
2.1 Indices 11
2.2 Worked problems on indices 12
2.3 Further worked problems on indices 13
2.4 Standard form 15
2.5 Worked problems on standard form 15
2.6 Further worked problems on standard form 16
2.7 Engineering notation and common prefixes 17
3 Binary, octal and hexadecimal numbers 19
3.1 Introduction 19
3.2 Binary numbers 20
3.3 Octal numbers 23
3.4 Hexadecimal numbers 24
4 Calculations and evaluation of formulae 29
4.1 Errors and approximations 29
4.2 Use of calculator 31
4.3 Conversion tables and charts 33
4.4 Evaluation of formulae 34
Revision Test 1 39
5 Algebra 40
5.1 Basic operations 40
5.2 Laws of indices 42
5.3 Brackets and factorisation 44
5.4 Fundamental laws and precedence 46
5.5 Direct and inverse proportionality 48
6 Further algebra 50
6.1 Polynomial division 50
6.2 The factor theorem 52
6.3 The remainder theorem 54
7 Partial fractions 57
7.1 Introduction to partial fractions 57
7.2 Worked problems on partial fractions with linear factors 58
7.3 Worked problems on partial fractions with repeated linear factors 60
7.4 Worked problems on partial fractions with quadratic factors 61
8 Solving simple equations 64
8.1 Expressions, equations and identities 64
8.2 Worked problems on simple equations 65
8.3 Further worked problems on simple equations 66
8.4 Practical problems involving simple equations 68
8.5 Further practical problems involving simple equations 69
Revision Test 2 72
9 Solving simultaneous equations 73
9.1 Introduction to simultaneous equations 73
9.2 Worked problems on simultaneous equations in two unknowns 73
9.3 Further worked problems on simultaneous equations 75
9.4 More difficult worked problems on simultaneous equations 77
9.5 Practical problems involving simultaneous equations 79
10 Transposition of formulae 83
10.1 Introduction to transposition of formulae 83
10.2 Worked problems on transposition of formulae 83
10.3 Further worked problems on transposition of formulae 85
10.4 Harder worked problems on transposition of formulae 87
11 Solving quadratic equations 90
11.1 Introduction to quadratic equations 90
11.2 Solution of quadratic equations by factorisation 91
11.3 Solution of quadratic equations by 'completing the square' 92
11.4 Solution of quadratic equations by formula 94
11.5 Practical problems involving quadratic equations 95
11.6 The solution of linear and quadratic equations simultaneously 97
12 Inequalities 99
12.1 Introduction to inequalities 99
12.2 Simple inequalities 100
12.3 Inequalities involving a modulus 100
12.4 Inequalities involving quotients 101
12.5 Inequalities involving square functions 102
12.6 Quadratic inequalities 103
13 Logarithms 105
13.1 Introduction to logarithms 105
13.2 Laws of logarithms 107
13.3 Indicial equations 110
13.4 Graphs of logarithmic functions 111
Revision Test 3 112
14 Exponential functions 113
14.1 Introduction to exponential functions 113
14.2 The power series for e^{x} 114
14.3 Graphs of exponential functions 116
14.4 Napierian logarithms 118
14.5 Laws of growth and decay 120
15 Number sequences 125
15.1 Arithmetic progressions 125
15.2 Worked problems on arithmetic progressions 126
15.3 Further worked problems on arithmetic progressions 127
15.4 Geometric progressions 128
15.5 Worked problems on geometric progressions 129
15.6 Further worked problems on geometric progressions 130
15.7 Combinations and permutations 132
16 The binomial series 134
16.1 Pascal's triangle 134
16.2 The binomial series 136
16.3 Worked problems on the binomial series 136
16.4 Further worked problems on the binomial series 138
16.5 Practical problems involving the binomial theorem 140
17 Solving equations by iterative methods 143
17.1 Introduction to iterative methods 143
17.2 The Newton-Raphson method 144
17.3 Worked problems on the Newton-Raphson method 144
Revision Test 4 147
Multiple choice questions on Chapters 1-17148
Section 2 Areas and volumes 153
18 Areas of common shapes 155
18.1 Introduction 155
18.2 Properties of quadrilaterals 156
18.3 Areas of common shapes 156
18.4 Worked problems on areas of common shapes 157
18.5 Further worked problems on areas of plane figures 160
18.6 Worked problems on areas of composite figures 161
18.7 Areas of similar shapes 163
19 The circle 164
19.1 Introduction 164
19.2 Properties of circles 164
19.3 Radians and degrees 166
19.4 Arc length and area of circles and sectors 167
19.5 Worked problems on arc length and area of circles and sectors 167
19.6 The equation of a circle 170
20 Volumes and surface areas of common solids 172
20.1 Introduction 172
20.2 Volumes and surface areas of regular solids 173
20.3 Worked problems on volumes and surface areas of regular solids 173
20.4 Further worked problems on volumes and surface areas of regular solids 175
20.5 Volumes and surface areas of frusta of pyramids and cones 179
20.6 The frustum and zone of a sphere 183
20.7 Prismoidal rule 185
20.8 Volumes of similar shapes 187
21 Irregular areas and volumes and mean values of waveforms 189
21.1 Area of irregular figures 190
21.2 Volumes of irregular solids 192
21.3 The mean or average value of a waveform 193
Revision Test 5 198
Section 3 Trigonometry 201
22 Introduction to trigonometry 203
22.1 Trigonometry 203
22.2 The theorem of Pythagoras 204
22.3 Trigonometric ratios of acute angles 205
22.4 Fractional and surd forms of trigonometric ratios 207
22.5 Evaluating trigonometric ratios of any angles 208
22.6 Solution of right-angled triangles 212
22.7 Angle of elevation and depression 213
22.8 Trigonometric approximations for small angles 215
23 Trigonometric waveforms 216
23.1 Graphs of trigonometric functions 216
23.2 Angles of any magnitude 217
23.3 The production of a sine and cosine wave 219
23.4 Sine and cosine curves 220
23.5 Sinusoidal form $A \sin (\omega t \pm \alpha)$ 224
23.6 Waveform harmonics 226
24 Cartesian and polar co-ordinates 228
24.1 Introduction 229
24.2 Changing from Cartesian into polar co-ordinates 229
24.3 Changing from polar into Cartesian co-ordinates 230
24.4 Use of $\mathrm{Pol} /$ Rec functions on calculators 232
Revision Test 6 233
25 Triangles and some practical applications 234
25.1 Sine and cosine rules 234
25.2 Area of any triangle 235
25.3 Worked problems on the solution of triangles and their areas 235
25.4 Further worked problems on the solution of triangles and their areas 237
25.5 Practical situations involving trigonometry 238
25.6 Further practical situations involving trigonometry 240
26 Trigonometric identities and equations 244
26.1 Trigonometric identities 244
26.2 Worked problems on trigonometric identities 245
26.3 Trigonometric equations 246
26.4 Worked problems (i) on trigonometric equations 247
26.5 Worked problems (ii) on trigonometric equations 248
26.6 Worked problems (iii) on trigonometric equations 249
26.7 Worked problems (iv) on trigonometric equations 249
27 Compound angles 251
27.1 Compound angle formulae 251
27.2 Conversion of $a \sin \omega t+b \cos \omega t$ into $R \sin (\omega t+\alpha)$ 253
27.3 Double angles 257
27.4 Changing products of sines and cosines into sums or differences 258
27.5 Changing sums or differences of sines and cosines into products 259
Revision Test 7 261
Multiple choice questions on Chapters 18-27 262
Section 4 Graphs 267
28 Straight line graphs 269
28.1 Introduction to graphs 269
28.2 The straight line graph 270
28.3 Practical problems involving straight line graphs 275
29 Reduction of non-linear laws to linear form 282
29.1 Determination of law 282
29.2 Determination of law involving logarithms 285
30 Graphs with logarithmic scales 291
30.1 Logarithmic scales 291
30.2 Graphs of the form $y=a x^{n}$ 292
30.3 Graphs of the form $y=a b^{x}$ 295
30.4 Graphs of the form $y=a e^{k x}$ 296
31 Graphical solution of equations 299
31.1 Graphical solution of simultaneous equations 299
31.2 Graphical solution of quadratic equations 301
31.3 Graphical solution of linear and quadratic equations simultaneously 304
31.4 Graphical solution of cubic equations 305
32 Functions and their curves 307
32.1 Standard curves 307
32.2 Simple transformations 310
32.3 Periodic functions 314
32.4 Continuous and discontinuous functions 314
32.5 Even and odd functions 315
32.6 Inverse functions 316
Revision Test 8 319
Section 5 Complex numbers 321
33 Complex numbers 323
33.1 Cartesian complex numbers 323
33.2 The Argand diagram 325
33.3 Addition and subtraction of complex numbers 325
33.4 Multiplication and division of complex numbers 326
33.5 Complex equations 328
33.6 The polar form of a complex number 329
33.7 Multiplication and division in polar form 330
33.8 Applications of complex numbers 331
34 De Moivre's theorem 336
34.1 Introduction 336
34.2 Powers of complex numbers 336
34.3 Roots of complex numbers 337
Section 6 Vectors 341
35 Vectors 343
35.1 Introduction 343
35.2 Scalars and vectors 343
35.3 Drawing a vector 344
35.4 Addition of vectors by drawing 344
35.5 Resolving vectors into horizontal and vertical components 347
35.6 Addition of vectors by calculation 348
35.7 Vector subtraction 352
35.8 Relative velocity 354
$35.9 i, j$, and k notation 355
36 Methods of adding alternating waveforms 357
36.1 Combination of two periodic functions 357
36.2 Plotting periodic functions 358
36.3 Determining resultant phasors by drawing 359
36.4 Determining resultant phasors by the sine and cosine rules 361
36.5 Determining resultant phasors by horizontal and vertical components 362
36.6 Determining resultant phasors by complex numbers 364
Revision Test 9 367
Section 7 Statistics 369
37 Presentation of statistical data 371
37.1 Some statistical terminology 372
37.2 Presentation of ungrouped data 373
37.3 Presentation of grouped data 376
38 Mean, median, mode and standard deviation 383
38.1 Measures of central tendency 383
38.2 Mean, median and mode for discrete data 384
38.3 Mean, median and mode for grouped data 385
38.4 Standard deviation 386
38.5 Quartiles, deciles and percentiles 388
39 Probability 390
39.1 Introduction to probability 391
39.2 Laws of probability 391
39.3 Worked problems on probability 392
39.4 Further worked problems on probability 393
39.5 Permutations and combinations 396
Revision Test 10 398
40 The binomial and Poisson distribution 399
40.1 The binomial distribution 399
40.2 The Poisson distribution 402
41 The normal distribution 406
41.1 Introduction to the normal distribution 406
41.2 Testing for a normal distribution 411
Revision Test 11 415
42 Linear correlation 416
42.1 Introduction to linear correlation 416
42.2 The product-moment formula for determining the linear correlation coefficient 416
42.3 The significance of a coefficient of correlation 417
42.4 Worked problems on linear correlation 417
43 Linear regression 421
43.1 Introduction to linear regression 421
43.2 The least-squares regression lines 421
43.3 Worked problems on linear regression 422
44 Sampling and estimation theories 427
44.1 Introduction 427
44.2 Sampling distributions 427
44.3 The sampling distribution of the means 428
44.4 The estimation of population parameters based on a large sample size 431
44.5 Estimating the mean of a population based on a small sample size 435
Revision Test 12 439
Multiple choice questions on Chapters 28-44 440
Section 8 Differential calculus 445
45 Introduction to differentiation 447
45.1 Introduction to calculus 447
45.2 Functional notation 447
45.3 The gradient of a curve 448
45.4 Differentiation from first principles 449
45.5 Differentiation of $y=a x^{n}$ by the general rule 452
45.6 Differentiation of sine and cosine functions 453
45.7 Differentiation of $e^{a x}$ and $\ln a x$ 455
46 Methods of differentiation 457
46.1 Differentiation of common functions 457
46.2 Differentiation of a product 459
46.3 Differentiation of a quotient 460
46.4 Function of a function 462
46.5 Successive differentiation 463
47 Some applications of differentiation 466
47.1 Rates of change 466
47.2 Velocity and acceleration 468
47.3 Turning points 470
47.4 Practical problems involving maximum and minimum values 474
47.5 Points of inflexion 477
47.6 Tangents and normals 479
47.7 Small changes 481
Revision Test 13 483
48 Differentiation of parametric equations 484
48.1 Introduction to parametric equations 484
48.2 Some common parametric equations 485
48.3 Differentiation in parameters 485
48.4 Further worked problems on differentiation of parametric equations 487
49 Differentiation of implicit functions 490
49.1 Implicit functions 490
49.2 Differentiating implicit functions 490
49.3 Differentiating implicit functions containing products and quotients 491
49.4 Further implicit differentiation 492
50 Logarithmic differentiation 495
50.1 Introduction to logarithmic differentiation 495
50.2 Laws of logarithms 495
50.3 Differentiation of logarithmic functions 496
50.4 Differentiation of further logarithmic functions 496
50.5 Differentiation of $[f(x)]^{x}$ 498
Revision Test 14 501
Section 9 Integral calculus 503
51 Standard integration 505
51.1 The process of integration 505
51.2 The general solution of integrals of the form $a x^{n}$ 506
51.3 Standard integrals 506
51.4 Definite integrals 509
52 Integration using algebraic substitutions 512
52.1 Introduction 512
52.2 Algebraic substitutions 512
52.3 Worked problems on integration using algebraic substitutions 513
52.4 Further worked problems on integration using algebraic substitutions 514
52.5 Change of limits 515
53 Integration using trigonometric substitutions 517
53.1 Introduction 517
53.2 Worked problems on integration of $\sin ^{2} x, \cos ^{2} x, \tan ^{2} x$ and $\cot ^{2} x$ 517
53.3 Worked problems on integration of powers of sines and cosines 519
53.4 Worked problems on integration of products of sines and cosines 520
53.5 Worked problems on integration using the $\sin \theta$ substitution 521
53.6 Worked problems on integration using the $\tan \theta$ substitution 523
Revision Test 15524
54 Integration using partial fractions 525
54.1 Introduction 525
54.2 Worked problems on integration using partial fractions with linear factors 525
54.3 Worked problems on integration using partial fractions with repeated linear factors 527
54.4 Worked problems on integration using partial fractions with quadratic factors 528
55 The $t=\tan \frac{\theta}{2}$ substitution 530
55.1 Introduction 530
55.2 Worked problems on the $t=\tan \frac{\theta}{2}$ substitution 531
55.3 Further worked problems on the $t=\tan \frac{\theta}{2}$ substitution 532
56 Integration by parts 535
56.1 Introduction 535
56.2 Worked problems on integration by parts 535
56.3 Further worked problems on integration by parts 537
57 Numerical integration 541
57.1 Introduction 541
57.2 The trapezoidal rule 541
57.3 The mid-ordinate rule 544
57.4 Simpson's rule 545
Revision Test 16 549
58 Areas under and between curves 550
58.1 Area under a curve 550
58.2 Worked problems on the area under a curve 551
58.3 Further worked problems on the area under a curve 554
58.4 The area between curves 557
59 Mean and root mean square values 559
59.1 Mean or average values 559
59.2 Root mean square values 561
60 Volumes of solids of revolution 564
60.1 Introduction 564
60.2 Worked problems on volumes of solids of revolution 565
60.3 Further worked problems on volumes of solids of revolution 566
61 Centroids of simple shapes 569
61.1 Centroids 569
61.2 The first moment of area 569
61.3 Centroid of area between a curve and the x-axis 570
61.4 Centroid of area between a curve and the y-axis 570
61.5 Worked problems on centroids of simple shapes 570
61.6 Further worked problems on centroids of simple shapes 572
61.7 Theorem of Pappus 574
62 Second moments of area 578
62.1 Second moments of area and radius of gyration 578
62.2 Second moment of area of regular sections 579
62.3 Parallel axis theorem 579
62.4 Perpendicular axis theorem 579
62.5 Summary of derived results 580
62.6 Worked problems on second moments of area of regular sections 580
62.7 Worked problems on second moments of area of composite areas 583
Revision Test 17 586
Section 10 Further number and algebra 587
63 Boolean algebra and logic circuits 589
63.1 Boolean algebra and switching circuits 590
63.2 Simplifying Boolean expressions 594
63.3 Laws and rules of Boolean algebra 594
63.4 De Morgan's laws 596
63.5 Karnaugh maps 597
63.6 Logic circuits 601
63.7 Universal logic gates 605
64 The theory of matrices and determinants 608
64.1 Matrix notation 608
64.2 Addition, subtraction and multiplication of matrices 609
64.3 The unit matrix 612
64.4 The determinant of a 2 by 2 matrix 612
64.5 The inverse or reciprocal of a 2 by 2 matrix 613
64.6 The determinant of a 3 by 3 matrix 614
64.7 The inverse or reciprocal of a 3 by 3 matrix 616
65 The solution of simultaneous equations by matrices and determinants 618
65.1 Solution of simultaneous equations by matrices 618
65.2 Solution of simultaneous equations by determinants 621
65.3 Solution of simultaneous equations using Cramers rule 624
65.4 Solution of simultaneous equations using the Gaussian elimination method 625
Revision Test 18 628
Section 11 Differential equations 629
66 Introduction to differential equations 631
66.1 Family of curves 631
66.2 Differential equations 632
66.3 The solution of equations of the form $\frac{d y}{d x}=f(x)$ 633
66.4 The solution of equations of the form $\frac{d y}{d x}=f(y)$ 634
66.5 The solution of equations of the form $\frac{d y}{d x}=f(x) \cdot f(y)$ 636
Revision Test 19 640
Multiple choice questions on Chapters 45-66 641
List of Essential formulae 645
Answers to Practice Exercises 656
Answers to multiple choice questions 687
Index 688

Preface

'Engineering Mathematics $7^{\text {th }}$ Edition' covers a wide range of syllabus requirements. In particular, the book is suitable for any course involving engineering mathematics and in particular for the latest National Certificate and Diploma courses and City \& Guilds syllabuses in Engineering.

This text will provide a foundation in mathematical principles, which will enable students to solve mathematical, scientific and associated engineering principles. In addition, the material will provide engineering applications and mathematical principles necessary for advancement onto a range of Incorporated Engineer degree profiles. It is widely recognised that a students' ability to use mathematics is a key element in determining subsequent success. First year undergraduates who need some remedial mathematics will also find this book meets their needs.

In Engineering Mathematics $7^{\text {th }}$ Edition, new material is included on points of inflexion and Gaussian elimination; in addition, three chapters found on the internet in the previous edition - linear correlation, linear regression and sampling and estimation theories have been added to the text. Another new feature is a list of essential formulae at the end of the book.

Throughout the text, theory is introduced in each chapter by a simple outline of essential definitions, formulae, laws and procedures. The theory is kept to a minimum, for problem solving is extensively used to establish and exemplify the theory. It is intended that readers will gain real understanding through seeing problems solved and then through solving similar problems themselves.

For clarity, the text is divided into eleven topic areas, these being: number and algebra, areas and volumes, trigonometry, graphs, complex numbers, vectors, statistics, differential calculus, integral calculus, further number and algebra and differential equations.

This new edition covers, in particular, the following syllabuses:
(i) Mathematics for Technicians, the core unit for National Certificate/Diploma courses in Engineering, to include all or part of the following chapters:

1. Algebraic methods: $2,5,11,13,14,28,30$ (1, 4, 8, 9 and 10 for revision)
2. Trigonometric methods and areas and volumes: 18-20, 22-25, 33, 34
3. Statistical methods: 37,38
4. Elementary calculus: $45,51,58$
(ii) Further Mathematics for Technicians, the optional unit for National Certificate/Diploma courses in Engineering, to include all or part of the following chapters:
5. Advanced graphical techniques: 29-31
6. Algebraic techniques: $15,33,37,38$
7. Trigonometry: 22-27
8. Calculus: 45-47, 51, 57-59
(iii) Mathematics contents of City \& Guilds Technician Certificate/Diploma courses
(iv) Any introductory/access/foundation course involving Engineering Mathematics at University, Colleges of Further and Higher education and in schools.

Each topic considered in the text is presented in a way that assumes in the reader little previous knowledge of that topic.
'Engineering Mathematics $7^{\text {th }}$ Edition' provides a follow-up to 'Basic Engineering Mathematics $\boldsymbol{6}^{\text {th }}$ Edition' and a lead into 'Higher Engineering Mathematics $7^{\text {th }}$ Edition'.

This textbook contains over 1000 worked problems, followed by some $\mathbf{1 8 0 0}$ further problems (all with answers at the back of the book). The further problems are contained within some 237 Practice Exercises; each Exercise follows on directly from the relevant section of work, every two or three pages. In addition, the text contains 238 multiple-choice questions. Where at all possible, the problems mirror practical situations found in engineering and science. $\mathbf{5 2 5}$ line diagrams enhance the understanding of the theory.
At regular intervals throughout the text are some 19 Revision Tests to check understanding. For example, Revision Test 1 covers material contained in Chapters 1 to 4, Revision Test 2 covers the material in Chapters 5 to 8, and so on. These Revision Tests do not have answers given since it is envisaged that lecturers could set the tests for students to attempt as part of their course structure. Lecturers' may obtain a set of solutions of the Revision Tests in an Instructor's Manual available via the internet - see below.
A list of Essential Formulae is included in the text for convenience of reference.
'Learning by Example' is at the heart of 'Engineering Mathematics $7^{\text {th }}$ Edition'.

JOHN BIRD
Defence College of Technical Training, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth, with Examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for the International Baccalaureate Organisation. He is the author
of some 125 textbooks on engineering and mathematical subjects, with worldwide sales of 1 million copies. He is currently a Senior Training Provider at the Defence School of Marine Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads

For students

1. Full solutions to the 1800 questions contained in the 237 Practice Exercises
2. Download Multiple choice questions and answer sheet
3. List of Essential Formulae
4. Famous Engineers/Scientists - 24 are mentioned in the text.

For instructors/lecturers

1. Full solutions to the 1800 questions contained in the 237 Practice Exercises
2. Full solutions and marking scheme to each of the 19 Revision Tests - named as Instructors guide
3. Revision Tests - available to run off to be given to students
4. Download Multiple choice questions and answer sheet
5. List of Essential Formulae
6. Illustrations - all $\mathbf{5 2 5}$ available on PowerPoint
7. Famous Engineers/Scientists - 24 are mentioned in the text

Section 1

Number and algebra

This page intentionally left blank

Chapter 1

Revision of fractions, decimals and percentages

Abstract

Why it is important to understand: Revision of fractions, decimals and percentages Engineers use fractions all the time, examples including stress to strain ratios in mechanical engineering, chemical concentration ratios and reaction rates, and ratios in electrical equations to solve for current and voltage. Fractions are also used everywhere in science, from radioactive decay rates to statistical analysis. Also, engineers and scientists use decimal numbers all the time in calculations. Calculators are able to handle calculations with fractions and decimals; however, there will be times when a quick calculation involving addition, subtraction, multiplication and division of fractions and decimals is needed. Engineers and scientists also use percentages a lot in calculations; for example, percentage change is commonly used in engineering, statistics, physics, finance, chemistry, and economics. When you feel able to do calculations with basic arithmetic, fractions, decimals and percentages, with or without the aid of a calculator, then suddenly mathematics doesn't seem quite so difficult.

At the end of this chapter, you should be able to:

- add, subtract, multiply and divide with fractions
- understand practical examples involving ratio and proportion
- add, subtract, multiply and divide with decimals
- understand and use percentages

1.1 Fractions

When 2 is divided by 3 , it may be written as $\frac{2}{3}$ or $2 / 3$. $\frac{2}{3}$ is called a fraction. The number above the line, i.e. 2 , is called the numerator and the number below the line, i.e. 3 , is called the denominator.

When the value of the numerator is less than the value of the denominator, the fraction is called a proper fraction; thus $\frac{2}{3}$ is a proper fraction. When the value
of the numerator is greater than the denominator, the fraction is called an improper fraction. Thus $\frac{7}{3}$ is an improper fraction and can also be expressed as a mixed number, that is, an integer and a proper fraction. Thus the improper fraction $\frac{7}{3}$ is equal to the mixed number $2 \frac{1}{3}$
When a fraction is simplified by dividing the numerator and denominator by the same number, the process is called cancelling. Cancelling by 0 is not permissible.

Problem 1. Simplify: $\frac{1}{3}+\frac{2}{7}$
The lowest common multiple (i.e. LCM) of the two denominators is 3×7, i.e. 21
Expressing each fraction so that their denominators are 21, gives:

$$
\begin{aligned}
\frac{1}{3}+\frac{2}{7} & =\frac{1}{3} \times \frac{7}{7}+\frac{2}{7} \times \frac{3}{3}=\frac{7}{21}+\frac{6}{21} \\
& =\frac{7+6}{21}=\frac{\mathbf{1 3}}{21}
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
& \text { Step (2) Step (3) } \\
& \frac{1}{3}+\frac{2}{7}=\frac{\stackrel{\downarrow}{(7 \times 1)+(3 \times 2)}}{\underset{\uparrow}{21}}
\end{aligned}
$$

Step 1: the LCM of the two denominators;
Step 2: for the fraction $\frac{1}{3}, 3$ into 21 goes 7 times, $7 \times$ the numerator is 7×1;
Step 3: for the fraction $\frac{2}{7}, 7$ into 21 goes 3 times, $3 \times$ the numerator is 3×2
Thus $\frac{1}{3}+\frac{2}{7}=\frac{7+6}{21}=\frac{\mathbf{1 3}}{\mathbf{2 1}}$ as obtained previously.
Problem 2. Find the value of $3 \frac{2}{3}-2 \frac{1}{6}$
One method is to split the mixed numbers into integers and their fractional parts. Then

$$
\begin{aligned}
3 \frac{2}{3}-2 \frac{1}{6} & =\left(3+\frac{2}{3}\right)-\left(2+\frac{1}{6}\right) \\
& =3+\frac{2}{3}-2-\frac{1}{6} \\
& =1+\frac{4}{6}-\frac{1}{6}=1 \frac{3}{6}=\mathbf{1} \frac{\mathbf{1}}{2}
\end{aligned}
$$

Another method is to express the mixed numbers as improper fractions.
Since $3=\frac{9}{3}$, then $3 \frac{2}{3}=\frac{9}{3}+\frac{2}{3}=\frac{11}{3}$
Similarly, $2 \frac{1}{6}=\frac{12}{6}+\frac{1}{6}=\frac{13}{6}$

Thus $3 \frac{2}{3}-2 \frac{1}{6}=\frac{11}{3}-\frac{13}{6}=\frac{22}{6}-\frac{13}{6}=\frac{9}{6}=\mathbf{1} \frac{1}{2}$
as obtained previously.

Problem 3. Determine the value of

$$
4 \frac{5}{8}-3 \frac{1}{4}+1 \frac{2}{5}
$$

$$
\begin{aligned}
4 \frac{5}{8}-3 \frac{1}{4}+1 \frac{2}{5} & =(4-3+1)+\left(\frac{5}{8}-\frac{1}{4}+\frac{2}{5}\right) \\
& =2+\frac{5 \times 5-10 \times 1+8 \times 2}{40} \\
& =2+\frac{25-10+16}{40} \\
& =2+\frac{31}{40}=\mathbf{2} \frac{\mathbf{3 1}}{\mathbf{4 0}}
\end{aligned}
$$

Problem 4. Find the value of $\frac{3}{7} \times \frac{14}{15}$

Dividing numerator and denominator by 3 gives:

$$
\frac{1 \not \beta}{7} \times \frac{14}{\not 15_{5}}=\frac{1}{7} \times \frac{14}{5}=\frac{1 \times 14}{7 \times 5}
$$

Dividing numerator and denominator by 7 gives:

$$
\frac{1 \times 114^{2}}{1 \nexists \times 5}=\frac{1 \times 2}{1 \times 5}=\frac{\mathbf{2}}{\mathbf{5}}
$$

This process of dividing both the numerator and denominator of a fraction by the same factor(s) is called cancelling.

```
Problem 5. Evaluate: }1\frac{3}{5}\times2\frac{1}{3}\times3\frac{3}{7
```

Mixed numbers must be expressed as improper fractions before multiplication can be performed. Thus,

$$
\begin{aligned}
1 \frac{3}{5} & \times 2 \frac{1}{3} \times 3 \frac{3}{7} \\
& =\left(\frac{5}{5}+\frac{3}{5}\right) \times\left(\frac{6}{3}+\frac{1}{3}\right) \times\left(\frac{21}{7}+\frac{3}{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8}{5} \times \frac{1 \not p}{1 \not p} \times \frac{24^{8}}{\not t_{1}}=\frac{8 \times 1 \times 8}{5 \times 1 \times 1} \\
& =\frac{64}{5}=\mathbf{1 2} \frac{\mathbf{4}}{5}
\end{aligned}
$$

Problem 6. Simplify: $\frac{3}{7} \div \frac{12}{21}$

$$
\frac{3}{7} \div \frac{12}{21}=\frac{\frac{3}{7}}{\frac{12}{21}}
$$

Multiplying both numerator and denominator by the reciprocal of the denominator gives:

$$
\frac{\frac{3}{7}}{\frac{12}{21}}=\frac{\frac{1 \not \beta}{\not \partial \prime} \times \frac{\not \Lambda^{3}}{\not 2_{4}}}{\frac{1 \not 2}{1 \not 21} \times \frac{\not 2 \Lambda^{1}}{\not 2 L_{1}}}=\frac{\frac{3}{4}}{1}=\frac{3}{4}
$$

This method can be remembered by the rule: invert the second fraction and change the operation from division to multiplication. Thus:

$$
\frac{3}{7} \div \frac{12}{21}=\frac{1 \not \beta}{1 \not p} \times \frac{\not 21^{3}}{\not \not 2} 2_{4}=\frac{\mathbf{3}}{4} \text { as obtained previously. }
$$

Problem 7. Find the value of $5 \frac{3}{5} \div 7 \frac{1}{3}$

The mixed numbers must be expressed as improper fractions. Thus,

$$
5 \frac{3}{5} \div 7 \frac{1}{3}=\frac{28}{5} \div \frac{22}{3}=\frac{14 \not 28}{5} \times \frac{3}{\not 22_{11}}=\frac{\mathbf{4 2}}{\mathbf{5 5}}
$$

Problem 8. Simplify:

$$
\frac{1}{3}-\left(\frac{2}{5}+\frac{1}{4}\right) \div\left(\frac{3}{8} \times \frac{1}{3}\right)
$$

The order of precedence of operations for problems containing fractions is the same as that for integers, i.e. remembered by BODMAS (Brackets, Of, Division, Multiplication, Addition and Subtraction). Thus,

$$
\frac{1}{3}-\left(\frac{2}{5}+\frac{1}{4}\right) \div\left(\frac{3}{8} \times \frac{1}{3}\right)
$$

$$
\begin{align*}
& =\frac{1}{3}-\frac{4 \times 2+5 \times 1}{20} \div \frac{\not p^{1}}{24^{4}} \tag{B}\\
& =\frac{1}{3}-\frac{13}{526} \times \frac{\not x^{2}}{1} \tag{D}\\
& =\frac{1}{3}-\frac{26}{5} \tag{M}\\
& =\frac{(5 \times 1)-(3 \times 26)}{15} \tag{S}\\
& =\frac{-73}{15}=-\mathbf{4} \frac{\mathbf{1 3}}{\mathbf{1 5}}
\end{align*}
$$

Problem 9. Determine the value of

$$
\begin{align*}
\frac{7}{6} & \text { of }\left(3 \frac{1}{2}-2 \frac{1}{4}\right)+5 \frac{1}{8} \div \frac{3}{16}-\frac{1}{2} \\
\frac{7}{6} & \text { of }\left(3 \frac{1}{2}-2 \frac{1}{4}\right)+5 \frac{1}{8} \div \frac{3}{16}-\frac{1}{2} \\
& =\frac{7}{6} \text { of } 1 \frac{1}{4}+\frac{41}{8} \div \frac{3}{16}-\frac{1}{2} \tag{B}\\
& =\frac{7}{6} \times \frac{5}{4}+\frac{41}{8} \div \frac{3}{16}-\frac{1}{2} \tag{O}\\
& =\frac{7}{6} \times \frac{5}{4}+\frac{41}{18} \times \frac{16^{2}}{3}-\frac{1}{2} \tag{D}\\
& =\frac{35}{24}+\frac{82}{3}-\frac{1}{2} \tag{M}\\
& =\frac{35+656}{24}-\frac{1}{2} \tag{A}\\
& =\frac{691}{24}-\frac{1}{2} \tag{A}\\
& =\frac{691-12}{24} \tag{S}\\
& =\frac{679}{24}=\mathbf{2 8} \frac{7}{24}
\end{align*}
$$

Now try the following Practice Exercise

Practice Exercise 1 Fractions (Answers on page 656)

Evaluate the following:

1. (a) $\frac{1}{2}+\frac{2}{5}$
(b) $\frac{7}{16}-\frac{1}{4}$
2. (a) $\frac{2}{7}+\frac{3}{11}$ (b) $\frac{2}{9}-\frac{1}{7}+\frac{2}{3}$
3. (a) $10 \frac{3}{7}-8 \frac{2}{3}$
(b) $3 \frac{1}{4}-4 \frac{4}{5}+1 \frac{5}{6}$
4. (a) $\frac{3}{4} \times \frac{5}{9}$
(b) $\frac{17}{35} \times \frac{15}{119}$
5. (a) $\frac{3}{5} \times \frac{7}{9} \times 1 \frac{2}{7}$
(b) $\frac{13}{17} \times 4 \frac{7}{11} \times 3 \frac{4}{39}$
6. (a) $\frac{3}{8} \div \frac{45}{64}$
(b) $1 \frac{1}{3} \div 2 \frac{5}{9}$
7. $\frac{1}{2}+\frac{3}{5} \div \frac{8}{15}-\frac{1}{3}$
8. $\frac{7}{15}$ of $\left(15 \times \frac{5}{7}\right)+\left(\frac{3}{4} \div \frac{15}{16}\right)$
9. $\frac{1}{4} \times \frac{2}{3}-\frac{1}{3} \div \frac{3}{5}+\frac{2}{7}$
10. $\left(\frac{2}{3} \times 1 \frac{1}{4}\right) \div\left(\frac{2}{3}+\frac{1}{4}\right)+1 \frac{3}{5}$
11. If a storage tank is holding 450 litres when it is three-quarters full, how much will it contain when it is two-thirds full?
12. Three people, P, Q and R contribute to a fund. P provides $3 / 5$ of the total, Q provides $2 / 3$ of the remainder, and R provides $£ 8$. Determine
(a) the total of the fund, (b) the contributions of P and Q.

1.2 Ratio and proportion

The ratio of one quantity to another is a fraction, and is the number of times one quantity is contained in another quantity of the same kind. If one quantity is directly proportional to another, then as one quantity doubles, the other quantity also doubles. When a quantity is inversely proportional to another, then as one quantity doubles, the other quantity is halved.

Problem 10. A piece of timber 273 cm long is cut into three pieces in the ratio of 3 to 7 to 11 . Determine the lengths of the three pieces

The total number of parts is $3+7+11$, that is, 21 . Hence 21 parts correspond to 273 cm

1 part corresponds to $\frac{273}{21}=13 \mathrm{~cm}$
3 parts correspond to $3 \times 13=39 \mathrm{~cm}$
7 parts correspond to $7 \times 13=91 \mathrm{~cm}$
11 parts correspond to $11 \times 13=143 \mathrm{~cm}$

i.e. the lengths of the three pieces are $39 \mathrm{~cm}, 91 \mathrm{~cm}$ and 143 cm .

$($ Check: $39+91+143=273)$

Problem 11. A gear wheel having 80 teeth is in mesh with a 25 tooth gear. What is the gear ratio?

Gear ratio $=80: 25=\frac{80}{25}=\frac{16}{5}=3.2$
i.e. gear ratio $=\mathbf{1 6}: \mathbf{5}$ or $\mathbf{3 . 2 : 1}$

Problem 12. An alloy is made up of metals A and B in the ratio 2.5:1 by mass. How much of A has to be added to 6 kg of B to make the alloy?

Ratio A: B: :2.5:1 (i.e. A is to B as 2.5 is to 1) or $\frac{\mathrm{A}}{\mathrm{B}}=\frac{2.5}{1}=2.5$

When $\mathrm{B}=6 \mathrm{~kg}, \frac{\mathrm{~A}}{6}=2.5$ from which,

$$
\mathbf{A}=6 \times 2.5=\mathbf{1 5} \mathbf{k g}
$$

Problem 13. If 3 people can complete a task in 4 hours, how long will it take 5 people to complete the same task, assuming the rate of work remains constant?

The more the number of people, the more quickly the task is done, hence inverse proportion exists.

3 people complete the task in 4 hours.
1 person takes three times as long, i.e.
$4 \times 3=12$ hours,
5 people can do it in one fifth of the time that one person takes, that is $\frac{12}{5}$ hours or $\mathbf{2}$ hours $\mathbf{2 4}$ minutes.

Now try the following Practice Exercise

Practice Exercise 2 Ratio and proportion

 (Answers on page 656)1. Divide 621 cm in the ratio of 3 to 7 to 13 .
2. When mixing a quantity of paints, dyes of four different colours are used in the ratio of $7: 3: 19: 5$. If the mass of the first dye used is $3 \frac{1}{2} \mathrm{~g}$, determine the total mass of the dyes used.
3. Determine how much copper and how much zinc is needed to make a 99 kg brass ingot if they have to be in the proportions copper : zinc: :8:3 by mass.
4. It takes 21 hours for 12 men to resurface a stretch of road. Find how many men it takes to resurface a similar stretch of road in 50 hours 24 minutes, assuming the work rate remains constant.
5. It takes 3 hours 15 minutes to fly from city A to city B at a constant speed. Find how long the journey takes if
(a) the speed is $1 \frac{1}{2}$ times that of the original speed and
(b) if the speed is three-quarters of the original speed.

1.3 Decimals

The decimal system of numbers is based on the digits 0 to 9 . A number such as 53.17 is called a decimal fraction, a decimal point separating the integer part, i.e. 53 , from the fractional part, i.e. 0.17

A number which can be expressed exactly as a decimal fraction is called a terminating decimal and those which cannot be expressed exactly as a decimal fraction are called non-terminating decimals. Thus, $\frac{3}{2}=1.5$ is a terminating decimal, but $\frac{4}{3}=1.33333 \ldots$ is a nonterminating decimal. 1.33333... can be written as 1.3, called 'one point-three recurring'.
The answer to a non-terminating decimal may be expressed in two ways, depending on the accuracy required:
(i) correct to a number of significant figures, that is, figures which signify something, and
(ii) correct to a number of decimal places, that is, the number of figures after the decimal point.

The last digit in the answer is unaltered if the next digit on the right is in the group of numbers $0,1,2,3$ or 4 , but is increased by 1 if the next digit on the right is in the group of numbers $5,6,7,8$ or 9 . Thus the nonterminating decimal $7.6183 \ldots$ becomes 7.62 , correct to 3 significant figures, since the next digit on the right is 8 , which is in the group of numbers $5,6,7,8$ or 9 . Also 7.6183... becomes 7.618, correct to 3 decimal places, since the next digit on the right is 3 , which is in the group of numbers $0,1,2,3$ or 4

Problem 14. Evaluate: $42.7+3.04+8.7+0.06$

The numbers are written so that the decimal points are under each other. Each column is added, starting from the right.

$$
\begin{gathered}
42.7 \\
3.04 \\
8.7 \\
0.06 \\
\hline 54.50
\end{gathered}
$$

Thus $\mathbf{4 2 . 7}+\mathbf{3 . 0 4}+\mathbf{8 . 7} \mathbf{+ 0 . 0 6}=\mathbf{5 4 . 5 0}$

Problem 15. Take 81.70 from 87.23
The numbers are written with the decimal points under each other.

$$
87.23
$$

-81.70
5.53

Thus $87.23-81.70=5.53$

Problem 16. Find the value of

$$
23.4-17.83-57.6+32.68
$$

The sum of the positive decimal fractions is

$$
23.4+32.68=56.08
$$

The sum of the negative decimal fractions is

$$
17.83+57.6=75.43
$$

Taking the sum of the negative decimal fractions from the sum of the positive decimal fractions gives:

$$
\begin{gathered}
56.08-75.43 \\
\text { i.e. }-(75.43-56.08)=-\mathbf{1 9 . 3 5}
\end{gathered}
$$

Problem 17. Determine the value of 74.3×3.8

When multiplying decimal fractions: (i) the numbers are multiplied as if they are integers, and (ii) the position of the decimal point in the answer is such that there are as many digits to the right of it as the sum of the digits to the right of the decimal points of the two numbers being multiplied together. Thus
(i) $\begin{array}{r}743 \\ \quad 38 \\ \hline 5944 \\ 22290 \\ \hline 28234\end{array}$
(ii) As there are $(1+1)=2$ digits to the right of the decimal points of the two numbers being multiplied together, (74.3×3.8), then

$$
74.3 \times 3.8=282.34
$$

Problem 18. Evaluate $37.81 \div 1.7$, correct to (i) 4 significant figures and (ii) 4 decimal places

$$
37.81 \div 1.7=\frac{37.81}{1.7}
$$

The denominator is changed into an integer by multiplying by 10 . The numerator is also multiplied by 10 to keep the fraction the same. Thus

$$
\begin{aligned}
37.81 \div 1.7 & =\frac{37.81 \times 10}{1.7 \times 10} \\
& =\frac{378.1}{17}
\end{aligned}
$$

The long division is similar to the long division of integers and the first four steps are as shown:

$$
\begin{gathered}
1 7 \longdiv { 3 2 . 2 4 1 1 7 . . } \\
\frac{34}{37} .100000 \\
\frac{34}{41} \\
\frac{34}{70} \\
\frac{68}{20}
\end{gathered}
$$

(i) $\mathbf{3 7 . 8 1} \div \mathbf{1 . 7}=\mathbf{2 2} .24$, correct to $\mathbf{4}$ significant figures, and
(ii) $\mathbf{3 7 . 8 1} \div \mathbf{1 . 7}=\mathbf{2 2} .2412$, correct to 4 decimal places.

Problem 19. Convert (a) 0.4375 to a proper fraction and (b) 4.285 to a mixed number
(a) 0.4375 can be written as $\frac{0.4375 \times 10000}{10000}$ without changing its value,
i.e. $0.4375=\frac{4375}{10000}$

By cancelling

$$
\begin{aligned}
& \frac{4375}{10000}=\frac{875}{2000}=\frac{175}{400}=\frac{35}{80}=\frac{7}{16} \\
\text { i.e. } \quad \mathbf{0 . 4 3 7 5} & =\frac{\mathbf{7}}{\mathbf{1 6}}
\end{aligned}
$$

(b) Similarly, $\mathbf{4 . 2 8 5}=4 \frac{285}{1000}=\mathbf{4} \frac{\mathbf{5 7}}{\mathbf{2 0 0}}$

Problem 20. Express as decimal fractions:

$$
\text { (a) } \frac{9}{16} \text { and (b) } 5 \frac{7}{8}
$$

(a) To convert a proper fraction to a decimal fraction, the numerator is divided by the denominator. Division by 16 can be done by the long division method, or, more simply, by dividing by 2 and then 8 :

$$
\left.2 \longdiv { \frac { 4 . 5 0 } { 9 . 0 0 } } \quad 8\right)^{\frac{0.5625}{4.5000}}
$$

Thus $\frac{9}{16}=\mathbf{0 . 5 6 2 5}$
(b) For mixed numbers, it is only necessary to convert the proper fraction part of the mixed number to a decimal fraction. Thus, dealing with the $\frac{7}{8}$ gives:

$$
8 \longdiv { \frac { 0 . 8 7 5 } { 7 . 0 0 0 } } \quad \text { i.e. } \frac{7}{8}=0.875
$$

Thus $5 \frac{7}{8}=\mathbf{5 . 8 7 5}$

Now try the following Practice Exercise

Practice Exercise 3 Decimals (Answers on page 656)

In Problems 1 to 6, determine the values of the expressions given:

1. $23.6+14.71-18.9-7.421$
2. $73.84-113.247+8.21-0.068$
3. $3.8 \times 4.1 \times 0.7$
4. 374.1×0.006
5. $421.8 \div 17$, (a) correct to 4 significant figures and (b) correct to 3 decimal places.
6. $\frac{0.0147}{2.3}$, (a) correct to 5 decimal places and (b) correct to 2 significant figures.
7. Convert to proper fractions:
(a) 0.65 (b) 0.84
(c) 0.0125
(d) 0.282 and
(e) 0.024
8. Convert to mixed numbers:
(a) 1.82 (b) 4.275
(c) 14.125
(d) 15.35 and
(e) 16.2125

In Problems 9 to 12, express as decimal fractions to the accuracy stated:
9. $\frac{4}{9}$, correct to 5 significant figures.
10. $\frac{17}{27}$, correct to 5 decimal places.
11. $1 \frac{9}{16}$, correct to 4 significant figures.
12. $13 \frac{31}{37}$, correct to 2 decimal places.
13. Determine the dimension marked x in the length of shaft shown in Figure 1.1. The dimensions are in millimetres.

Figure 1.1
14. A tank contains 1800 litres of oil. How many tins containing 0.75 litres can be filled from this tank?

1.4 Percentages

Percentages are used to give a common standard and are fractions having the number 100 as their
denominators. For example, 25 per cent means $\frac{25}{100}$ i.e. $\frac{1}{4}$ and is written 25%

Problem 21. Express as percentages:
(a) 1.875 and
(b) 0.0125

A decimal fraction is converted to a percentage by multiplying by 100 . Thus,
(a) 1.875 corresponds to $1.875 \times 100 \%$, i.e. $\mathbf{1 8 7 . 5 \%}$
(b) 0.0125 corresponds to $0.0125 \times 100 \%$, i.e. $\mathbf{1 . 2 5 \%}$

Problem 22. Express as percentages:
(a) $\frac{5}{16}$ and
(b) $1 \frac{2}{5}$

To convert fractions to percentages, they are (i) converted to decimal fractions and (ii) multiplied by 100
(a) By division, $\frac{5}{16}=0.3125$, hence $\frac{5}{16}$ corresponds to $0.3125 \times 100 \%$, i.e. $\mathbf{3 1 . 2 5 \%}$
(b) Similarly, $1 \frac{2}{5}=1.4$ when expressed as a decimal fraction.

Hence $1 \frac{2}{5}=1.4 \times 100 \%=\mathbf{1 4 0 \%}$

Problem 23. It takes 50 minutes to machine a certain part, Using a new type of tool, the time can be reduced by 15%. Calculate the new time taken

$$
\begin{aligned}
15 \% \text { of } 50 \text { minutes }=\frac{15}{100} \times 50 & =\frac{750}{100} \\
& =7.5 \text { minutes. }
\end{aligned}
$$

hence the new time taken is

$$
50-7.5=42.5 \text { minutes }
$$

Alternatively, if the time is reduced by 15%, then it now takes 85% of the original time, i.e. 85% of $50=\frac{85}{100} \times 50=\frac{4250}{100}=\mathbf{4 2 . 5}$ minutes, as above.

Problem 24. Find 12.5% of $£ 378$
12.5% of $£ 378$ means $\frac{12.5}{100} \times 378$, since per cent means 'per hundred'.

