


Engineering Mathematics

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will
require both basic and advanced mathematics. Without
mathematics to determine principles, calculate dimen-
sions and limits, explore variations, prove concepts, and
so on, there would be no mobile telephones, televisions,
stereo systems, video games, microwave ovens, comput-
ers, or virtually anything electronic. There would be no
bridges, tunnels, roads, skyscrapers, automobiles, ships,
planes, rockets or most things mechanical. There would
be no metals beyond the common ones, such as iron
and copper, no plastics, no synthetics. In fact, society
would most certainly be less advanced without the use
of mathematics throughout the centuries and into the
future.

Electrical engineers require mathematics to design,
develop, test, or supervise the manufacturing and instal-
lation of electrical equipment, components, or systems
for commercial, industrial, military, or scientific use.

Mechanical engineers require mathematics to perform
engineering duties in planning and designing tools,
engines, machines, and other mechanically functioning
equipment; they oversee installation, operation, mainte-
nance, and repair of such equipment as centralised heat,
gas, water, and steam systems.

Aerospace engineers require mathematics to perform a
variety of engineering work in designing, constructing,
and testing aircraft, missiles, and spacecraft; they con-
duct basic and applied research to evaluate adaptability
of materials and equipment to aircraft design and
manufacture and recommend improvements in testing
equipment and techniques.

Nuclear engineers require mathematics to conduct
research on nuclear engineering problems or apply

principles and theory of nuclear science to problems
concerned with release, control, and utilisation of
nuclear energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise
methods to improve oil and gas well production and
determine the need for new or modified tool designs;
they oversee drilling and offer technical advice to
achieve economical and satisfactory progress.

Industrial engineers require mathematics to design,
develop, test, and evaluate integrated systems for man-
aging industrial production processes, including human
work factors, quality control, inventory control, logis-
tics and material flow, cost analysis, and production
co-ordination.

Environmental engineers require mathematics to
design, plan, or perform engineering duties in the
prevention, control, and remediation of environmen-
tal health hazards, using various engineering disci-
plines; their work may include waste treatment, site
remediation, or pollution control technology.

Civil engineers require mathematics at all levels in
civil engineering – structural engineering, hydraulics
and geotechnical engineering are all fields that employ
mathematical tools such as differential equations, tensor
analysis, field theory, numerical methods and operations
research.

Knowledge of mathematics is therefore needed by each
of the engineering disciplines listed above.

It is intended that this text – Engineering Mathematics
– will provide a step-by-step approach to learning fun-
damental mathematics needed for your engineering
studies.
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Preface

‘Engineering Mathematics 7th Edition’ covers a wide
range of syllabus requirements. In particular, the book is
suitable for any course involving engineering mathemat-
ics and in particular for the latest National Certificate
and Diploma courses and City & Guilds syllabuses
in Engineering.

This text will provide a foundation in mathematical
principles, which will enable students to solve math-
ematical, scientific and associated engineering princi-
ples. In addition, the material will provide engineering
applications and mathematical principles necessary for
advancement onto a range of Incorporated Engineer
degree profiles. It is widely recognised that a students’
ability to use mathematics is a key element in determin-
ing subsequent success. First year undergraduates who
need some remedial mathematics will also find this book
meets their needs.

In Engineering Mathematics 7th Edition, new mate-
rial is included on points of inflexion and Gaussian
elimination; in addition, three chapters found on the
internet in the previous edition – linear correlation, lin-
ear regression and sampling and estimation theories –
have been added to the text. Another new feature is a
list of essential formulae at the end of the book.

Throughout the text, theory is introduced in each chapter
by a simple outline of essential definitions, formulae,
laws and procedures. The theory is kept to a minimum,
for problem solving is extensively used to establish and
exemplify the theory. It is intended that readers will gain
real understanding through seeing problems solved and
then through solving similar problems themselves.

For clarity, the text is divided into eleven topic areas,
these being: number and algebra, areas and volumes,
trigonometry, graphs, complex numbers, vectors, statis-
tics, differential calculus, integral calculus, further
number and algebra and differential equations.

This new edition covers, in particular, the following
syllabuses:

(i) Mathematics for Technicians, the core unit for
National Certificate/Diploma courses in Engi-
neering, to include all or part of the following
chapters:
1. Algebraic methods: 2, 5, 11, 13, 14, 28, 30 (1,

4, 8, 9 and 10 for revision)

2. Trigonometric methods and areas and vol-
umes: 18–20, 22–25, 33, 34

3. Statistical methods: 37, 38

4. Elementary calculus: 45, 51, 58
(ii) Further Mathematics for Technicians, the

optional unit for National Certificate/Diploma
courses in Engineering, to include all or part of
the following chapters:
1. Advanced graphical techniques: 29–31

2. Algebraic techniques: 15, 33, 37, 38

3. Trigonometry: 22–27

4. Calculus: 45– 47, 51, 57–59
(iii) Mathematics contents of City & Guilds Tech-

nician Certificate/Diploma courses
(iv) Any introductory/access/foundation course

involving Engineering Mathematics at Univer-
sity, Colleges of Further and Higher education
and in schools.

Each topic considered in the text is presented in a way
that assumes in the reader little previous knowledge of
that topic.

‘Engineering Mathematics 7th Edition’ provides a
follow-up to ‘Basic Engineering Mathematics 6th Edi-
tion’ and a lead into ‘Higher Engineering Mathematics
7th Edition’.



xii Preface

This textbook contains over 1000 worked problems,
followed by some 1800 further problems (all with
answers at the back of the book). The further problems
are contained within some 237 Practice Exercises; each
Exercise follows on directly from the relevant section
of work, every two or three pages. In addition, the text
contains 238 multiple-choice questions. Where at all
possible, the problems mirror practical situations found
in engineering and science. 525 line diagrams enhance
the understanding of the theory.

At regular intervals throughout the text are some 19
Revision Tests to check understanding. For example,
Revision Test 1 covers material contained in Chapters
1 to 4, Revision Test 2 covers the material in Chapters
5 to 8, and so on. These Revision Tests do not have
answers given since it is envisaged that lecturers could
set the tests for students to attempt as part of their course
structure. Lecturers’ may obtain a set of solutions of the
Revision Tests in an Instructor’s Manual available via
the internet – see below.

A list of Essential Formulae is included in the text for
convenience of reference.

‘Learning by Example’ is at the heart of ‘Engineering
Mathematics 7th Edition’.

JOHN BIRD
Defence College of Technical Training,

HMS Sultan,
formerly University of Portsmouth
and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics
in the Faculty of Technology at Highbury College,
Portsmouth, UK. More recently, he has combined free-
lance lecturing at the University of Portsmouth, with
Examiner responsibilities for Advanced Mathematics
with City and Guilds, and examining for the Interna-
tional Baccalaureate Organisation. He is the author

of some 125 textbooks on engineering and mathematical
subjects, with worldwide sales of 1 million copies. He
is currently a Senior Training Provider at the Defence
School of Marine Engineering in the Defence College of
Technical Training at HMS Sultan, Gosport, Hampshire,
UK.

Free Web downloads

For students

1. Full solutions to the 1800 questions contained
in the 237 Practice Exercises

2. Download Multiple choice questions and
answer sheet

3. List of Essential Formulae

4. Famous Engineers/Scientists – 24 are men-
tioned in the text.

For instructors/lecturers

1. Full solutions to the 1800 questions contained
in the 237 Practice Exercises

2. Full solutions and marking scheme to each of
the 19 Revision Tests – named as Instructors
guide

3. Revision Tests – available to run off to be
given to students

4. Download Multiple choice questions and
answer sheet

5. List of Essential Formulae

6. Illustrations – all 525 available on Power-
Point

7. Famous Engineers/Scientists – 24 are men-
tioned in the text
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Chapter 1

Revision of fractions,
decimals and percentages

Why it is important to understand: Revision of fractions, decimals and percentages

Engineers use fractions all the time, examples including stress to strain ratios in mechanical engineering,
chemical concentration ratios and reaction rates, and ratios in electrical equations to solve for current and
voltage. Fractions are also used everywhere in science, from radioactive decay rates to statistical analysis.
Also, engineers and scientists use decimal numbers all the time in calculations. Calculators are able to
handle calculations with fractions and decimals; however, there will be times when a quick calculation
involving addition, subtraction, multiplication and division of fractions and decimals is needed. Engineers
and scientists also use percentages a lot in calculations; for example, percentage change is commonly used
in engineering, statistics, physics, finance, chemistry, and economics. When you feel able to do calculations
with basic arithmetic, fractions, decimals and percentages, with or without the aid of a calculator, then
suddenly mathematics doesn’t seem quite so difficult.

At the end of this chapter, you should be able to:

• add, subtract, multiply and divide with fractions
• understand practical examples involving ratio and proportion
• add, subtract, multiply and divide with decimals
• understand and use percentages

1.1 Fractions

When 2 is divided by 3, it may be written as 2
3 or 2/3. 2

3
is called a fraction. The number above the line, i.e. 2,
is called the numerator and the number below the line,
i.e. 3, is called the denominator.
When the value of the numerator is less than the value
of the denominator, the fraction is called a proper
fraction; thus 2

3 is a proper fraction. When the value

of the numerator is greater than the denominator, the
fraction is called an improper fraction. Thus 7

3 is
an improper fraction and can also be expressed as a
mixed number, that is, an integer and a proper frac-
tion. Thus the improper fraction 7

3 is equal to the mixed
number 2 1

3
When a fraction is simplified by dividing the numer-
ator and denominator by the same number, the pro-
cess is called cancelling. Cancelling by 0 is not
permissible.

Engineering Mathematics. 978-0-415-66280-2, © 2014 John Bird. Published by Taylor & Francis. All rights reserved.
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Problem 1. Simplify:
1

3
+ 2

7

The lowest common multiple (i.e. LCM) of the two
denominators is 3×7, i.e. 21
Expressing each fraction so that their denominators are
21, gives:

1

3
+ 2

7
= 1

3
× 7

7
+ 2

7
× 3

3
= 7

21
+ 6

21

= 7 + 6

21
= 13

21

Alternatively:

1

3
+ 2

7
=

Step (2) Step (3)
↓ ↓

(7 × 1)+ (3 × 2)

21
↑

Step (1)

Step 1: the LCM of the two denominators;

Step 2: for the fraction 1
3 , 3 into 21 goes 7 times,

7× the numerator is 7×1;

Step 3: for the fraction 2
7 , 7 into 21 goes 3 times,

3× the numerator is 3×2

Thus
1

3
+ 2

7
= 7+6

21
= 13

21
as obtained previously.

Problem 2. Find the value of 3
2

3
− 2

1

6

One method is to split the mixed numbers into integers
and their fractional parts. Then

3
2

3
− 2

1

6
=

(
3 + 2

3

)
−

(
2 + 1

6

)

= 3 + 2

3
− 2 − 1

6

= 1 + 4

6
− 1

6
= 1

3

6
= 1

1
2

Another method is to express the mixed numbers as
improper fractions.

Since 3= 9

3
, then 3

2

3
= 9

3
+ 2

3
= 11

3

Similarly, 2
1

6
= 12

6
+ 1

6
= 13

6

Thus 3
2

3
−2

1

6
= 11

3
− 13

6
= 22

6
− 13

6
= 9

6
=1

1
2

as obtained previously.

Problem 3. Determine the value of

4
5

8
− 3

1

4
+ 1

2

5

4
5

8
− 3

1

4
+ 1

2

5
= (4 − 3 + 1) +

(
5

8
− 1

4
+ 2

5

)

= 2 + 5 × 5 − 10× 1 + 8 × 2

40

= 2 + 25 − 10 + 16

40

= 2 + 31

40
= 2

31
40

Problem 4. Find the value of
3

7
× 14

15

Dividing numerator and denominator by 3 gives:

13

7
× 14

155
= 1

7
× 14

5
= 1 × 14

7 × 5

Dividing numerator and denominator by 7 gives:

1 × 14 2

1 7 × 5
= 1 × 2

1 × 5
= 2

5

This process of dividing both the numerator and denom-
inator of a fraction by the same factor(s) is called
cancelling.

Problem 5. Evaluate: 1
3

5
× 2

1

3
× 3

3

7

Mixed numbers must be expressed as improper frac-
tions before multiplication can be performed. Thus,

1
3

5
× 2

1

3
× 3

3

7

=
(

5

5
+ 3

5

)
×

(
6

3
+ 1

3

)
×

(
21

7
+ 3

7

)
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= 8

5
×

1 7

1 3
× 24 8

71
= 8 × 1 × 8

5 × 1 × 1

= 64

5
= 12

4
5

Problem 6. Simplify:
3

7
÷ 12

21

3

7
÷ 12

21
=

3

7
12

21

Multiplying both numerator and denominator by the
reciprocal of the denominator gives:

3

7
12

21

=

1 3

1 7
× 21 3

12 4
1 12

1 21
× 21 1

12 1

=
3

4
1

= 3
4

This method can be remembered by the rule: invert the
second fraction and change the operation from division
to multiplication. Thus:

3

7
÷ 12

21
=

1 3

1 7
× 21 3

12 4
= 3

4
as obtained previously.

Problem 7. Find the value of 5
3

5
÷ 7

1

3

The mixed numbers must be expressed as improper
fractions. Thus,

5
3

5
÷ 7

1

3
= 28

5
÷ 22

3
=

14 28

5
× 3

22 11
= 42

55

Problem 8. Simplify:

1

3
−

(
2

5
+ 1

4

)
÷

(
3

8
× 1

3

)

The order of precedence of operations for problems
containing fractions is the same as that for integers,
i.e. remembered by BODMAS (Brackets, Of, Division,
Multiplication, Addition and Subtraction). Thus,

1

3
−

(
2

5
+ 1

4

)
÷

(
3

8
× 1

3

)

= 1

3
− 4 × 2 + 5 × 1

20
÷ 3 1

24 8
(B)

= 1

3
− 13

5 20
× 8 2

1
(D)

= 1

3
− 26

5
(M)

= (5 × 1) − (3 × 26)

15
(S)

= −73

15
= −4

13
15

Problem 9. Determine the value of

7

6
of

(
3

1

2
− 2

1

4

)
+ 5

1

8
÷ 3

16
− 1

2

7

6
of

(
3

1

2
− 2

1

4

)
+ 5

1

8
÷ 3

16
− 1

2

= 7

6
of 1

1

4
+ 41

8
÷ 3

16
− 1

2
(B)

= 7

6
× 5

4
+ 41

8
÷ 3

16
− 1

2
(O)

= 7

6
× 5

4
+ 41

1 8
× 16 2

3
− 1

2
(D)

= 35

24
+ 82

3
− 1

2
(M)

= 35 + 656

24
− 1

2
(A)

= 691

24
− 1

2
(A)

= 691 − 12

24
(S)

= 679

24
= 28

7
24

Now try the following Practice Exercise

Practice Exercise 1 Fractions (Answers on
page 656)

Evaluate the following:

1. (a)
1

2
+ 2

5
(b)

7

16
− 1

4
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2. (a)
2

7
+ 3

11
(b)

2

9
− 1

7
+ 2

3

3. (a) 10
3
7

− 8
2
3

(b) 3
1
4

− 4
4
5

+ 1
5
6

4. (a)
3

4
× 5

9
(b)

17

35
× 15

119

5. (a)
3

5
× 7

9
× 1

2

7
(b)

13

17
× 4

7

11
× 3

4

39

6. (a)
3

8
÷ 45

64
(b) 1

1

3
÷ 2

5

9

7.
1

2
+ 3

5
÷ 8

15
− 1

3

8.
7

15
of

(
15 × 5

7

)
+

(
3

4
÷ 15

16

)

9.
1

4
× 2

3
− 1

3
÷ 3

5
+ 2

7

10.
(

2

3
× 1

1

4

)
÷

(
2

3
+ 1

4

)
+ 1

3

5

11. If a storage tank is holding 450 litres when it is
three-quarters full, how much will it contain
when it is two-thirds full?

12. Three people, P, Q and R contribute to a fund.
P provides 3/5 of the total, Q provides 2/3 of
the remainder, and R provides £8. Determine
(a) the total of the fund, (b) the contributions
of P and Q.

1.2 Ratio and proportion

The ratio of one quantity to another is a fraction, and
is the number of times one quantity is contained in
another quantity of the same kind. If one quantity is
directly proportional to another, then as one quantity
doubles, the other quantity also doubles. When a quan-
tity is inversely proportional to another, then as one
quantity doubles, the other quantity is halved.

Problem 10. A piece of timber 273 cm long is
cut into three pieces in the ratio of 3 to 7 to 11.
Determine the lengths of the three pieces

The total number of parts is 3+7+11, that is, 21. Hence
21 parts correspond to 273 cm

1 part corresponds to
273

21
= 13cm

3 parts correspond to 3 × 13 = 39cm

7 parts correspond to 7 × 13 = 91cm

11 parts correspond to 11 × 13 = 143cm

i.e. the lengths of the three pieces are 39 cm, 91 cm
and 143 cm.

(Check: 39+91+143=273)

Problem 11. A gear wheel having 80 teeth is in
mesh with a 25 tooth gear. What is the gear ratio?

Gear ratio = 80 :25 = 80

25
= 16

5
= 3.2

i.e. gear ratio=16 : 5 or 3.2 : 1

Problem 12. An alloy is made up of metals A and
B in the ratio 2.5 : 1 by mass. How much of A has
to be added to 6 kg of B to make the alloy?

Ratio A : B: :2.5 : 1 (i.e. A is to B as 2.5 is to 1) or
A

B
= 2.5

1
=2.5

When B=6 kg,
A

6
=2.5 from which,

A=6×2.5=15 kg

Problem 13. If 3 people can complete a task in
4 hours, how long will it take 5 people to complete
the same task, assuming the rate of work remains
constant?

The more the number of people, the more quickly the
task is done, hence inverse proportion exists.

3 people complete the task in 4 hours.
1 person takes three times as long, i.e.

4×3=12 hours,

5 people can do it in one fifth of the time that one

person takes, that is
12

5
hours or 2 hours 24 minutes.
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Now try the following Practice Exercise

Practice Exercise 2 Ratio and proportion
(Answers on page 656)

1. Divide 621 cm in the ratio of 3 to 7 to 13.

2. When mixing a quantity of paints, dyes of
four different colours are used in the ratio of
7 : 3 : 19 : 5. If the mass of the first dye used
is 3 1

2 g, determine the total mass of the dyes
used.

3. Determine how much copper and how much
zinc is needed to make a 99 kg brass ingot if
they have to be in the proportions copper :
zinc: :8 : 3 by mass.

4. It takes 21 hours for 12 men to resurface a
stretch of road. Find how many men it takes to
resurface a similar stretch of road in 50 hours
24 minutes, assuming the work rate remains
constant.

5. It takes 3 hours 15 minutes to fly from city A
to city B at a constant speed. Find how long
the journey takes if

(a) the speed is 1 1
2 times that of the original

speed and
(b) if the speed is three-quarters of the orig-

inal speed.

1.3 Decimals

The decimal system of numbers is based on the digits
0 to 9. A number such as 53.17 is called a decimal
fraction, a decimal point separating the integer part,
i.e. 53, from the fractional part, i.e. 0.17
A number which can be expressed exactly as a deci-
mal fraction is called a terminating decimal and those
which cannot be expressed exactly as a decimal fraction
are called non-terminating decimals. Thus, 3

2 =1.5
is a terminating decimal, but 4

3 =1.33333. . . is a non-
terminating decimal. 1.33333. . . can be written as 1.3,
called ‘one point-three recurring’.
The answer to a non-terminating decimal may be
expressed in two ways, depending on the accuracy
required:

(i) correct to a number of significant figures, that is,
figures which signify something, and

(ii) correct to a number of decimal places, that is, the
number of figures after the decimal point.

The last digit in the answer is unaltered if the next digit
on the right is in the group of numbers 0, 1, 2, 3 or
4, but is increased by 1 if the next digit on the right is
in the group of numbers 5, 6, 7, 8 or 9. Thus the non-
terminating decimal 7.6183. . . becomes 7.62, correct to
3 significant figures, since the next digit on the right is
8, which is in the group of numbers 5, 6, 7, 8 or 9. Also
7.6183. . . becomes 7.618, correct to 3 decimal places,
since the next digit on the right is 3, which is in the group
of numbers 0, 1, 2, 3 or 4

Problem 14. Evaluate: 42.7+3.04+8.7+0.06

The numbers are written so that the decimal points are
under each other. Each column is added, starting from
the right.

42.7
3.04
8.7
0.06

54.50

Thus 42.7+3.04+8.7+0.06=54.50

Problem 15. Take 81.70 from 87.23

The numbers are written with the decimal points under
each other.

87.23
−81.70

5.53

Thus 87.23−81.70=5.53

Problem 16. Find the value of

23.4 − 17.83 − 57.6 + 32.68

The sum of the positive decimal fractions is
23.4+ 32.68 = 56.08

The sum of the negative decimal fractions is
17.83 + 57.6 = 75.43

Taking the sum of the negative decimal fractions from
the sum of the positive decimal fractions gives:

56.08−75.43

i.e. −(75.43−56.08)=−19.35
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Problem 17. Determine the value of 74.3×3.8

When multiplying decimal fractions: (i) the numbers are
multiplied as if they are integers, and (ii) the position of
the decimal point in the answer is such that there are as
many digits to the right of it as the sum of the digits to
the right of the decimal points of the two numbers being
multiplied together. Thus

(i) 743
38

5 944
22 290

28 234

(ii) As there are (1+1)=2 digits to the right of the dec-
imal points of the two numbers being multiplied
together, (74.3×3.8), then

74.3×3.8 = 282.34

Problem 18. Evaluate 37.81÷1.7, correct to (i) 4
significant figures and (ii) 4 decimal places

37.81 ÷ 1.7 = 37.81

1.7

The denominator is changed into an integer by multi-
plying by 10. The numerator is also multiplied by 10 to
keep the fraction the same. Thus

37.81 ÷ 1.7 = 37.81 × 10

1.7 × 10

= 378.1

17

The long division is similar to the long division of
integers and the first four steps are as shown:

17

22.24117..)
378.100000
34__
38
34__
41
34__
70
68__
20

(i) 37.81÷1.7=22.24, correct to 4 significant
figures, and

(ii) 37.81÷1.7=22.2412, correct to 4 decimal
places.

Problem 19. Convert (a) 0.4375 to a proper
fraction and (b) 4.285 to a mixed number

(a) 0.4375 can be written as
0.4375×10 000

10 000
without

changing its value,

i.e. 0.4375 = 4375

10 000

By cancelling

4375

10 000
= 875

2000
= 175

400
= 35

80
= 7

16

i.e. 0.4375 = 7
16

(b) Similarly, 4.285=4
285

1000
=4

57
200

Problem 20. Express as decimal fractions:

(a)
9

16
and (b) 5

7

8

(a) To convert a proper fraction to a decimal fraction,
the numerator is divided by the denominator. Divi-
sion by 16 can be done by the long division method,
or, more simply, by dividing by 2 and then 8:

2
4.50)
9.00 8

0.5625)
4.5000

Thus
9
16

= 0.5625

(b) For mixed numbers, it is only necessary to convert
the proper fraction part of the mixed number to a
decimal fraction. Thus, dealing with the 7

8 gives:

8
0.875)
7.000 i.e.

7

8
= 0.875

Thus 5
7
8

= 5.875

Now try the following Practice Exercise

Practice Exercise 3 Decimals (Answers on
page 656)

In Problems 1 to 6, determine the values of the
expressions given:

1. 23.6+14.71−18.9−7.421

2. 73.84−113.247+8.21−0.068
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3. 3.8×4.1×0.7

4. 374.1×0.006

5. 421.8÷17, (a) correct to 4 significant
figures and (b) correct to 3 decimal places.

6.
0.0147

2.3
, (a) correct to 5 decimal places and

(b) correct to 2 significant figures.

7. Convert to proper fractions:
(a) 0.65 (b) 0.84 (c) 0.0125 (d) 0.282 and
(e) 0.024

8. Convert to mixed numbers:
(a) 1.82 (b) 4.275 (c) 14.125 (d) 15.35 and
(e) 16.2125

In Problems 9 to 12, express as decimal fractions
to the accuracy stated:

9.
4

9
, correct to 5 significant figures.

10.
17

27
, correct to 5 decimal places.

11. 1
9

16
, correct to 4 significant figures.

12. 13
31

37
, correct to 2 decimal places.

13. Determine the dimension marked x in the
length of shaft shown in Figure 1.1. The
dimensions are in millimetres.

82.92

27.41 8.32 34.67x

Figure 1.1

14. A tank contains 1800 litres of oil. How many
tins containing 0.75 litres can be filled from
this tank?

1.4 Percentages

Percentages are used to give a common standard
and are fractions having the number 100 as their

denominators. For example, 25 per cent means
25

100
i.e.

1

4
and is written 25%

Problem 21. Express as percentages:
(a) 1.875 and (b) 0.0125

A decimal fraction is converted to a percentage by
multiplying by 100. Thus,

(a) 1.875 corresponds to 1.875×100%, i.e. 187.5%

(b) 0.0125 corresponds to 0.0125×100%, i.e. 1.25%

Problem 22. Express as percentages:

(a)
5

16
and (b) 1

2

5

To convert fractions to percentages, they are (i) con-
verted to decimal fractions and (ii) multiplied by 100

(a) By division,
5

16
= 0.3125, hence

5

16
corresponds

to 0.3125×100%, i.e. 31.25%

(b) Similarly, 1
2

5
=1.4 when expressed as a decimal

fraction.

Hence 1
2

5
=1.4×100%=140%

Problem 23. It takes 50 minutes to machine a
certain part, Using a new type of tool, the time can
be reduced by 15%. Calculate the new time taken

15% of 50 minutes = 15

100
× 50 = 750

100

= 7.5 minutes.

hence the new time taken is

50 − 7.5 = 42.5 minutes.

Alternatively, if the time is reduced by 15%, then
it now takes 85% of the original time, i.e. 85% of

50= 85

100
× 50= 4250

100
=42.5 minutes, as above.

Problem 24. Find 12.5% of £378

12.5% of £378 means
12.5

100
×378, since per cent means

‘per hundred’.




